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Summary
The paper describes a Bayesian spatial discrete time survival model to estimate the effect of air
pollution on the risk of preterm birth. The standard approach treats prematurity as a binary
outcome and cannot effectively examine time varying exposures during pregnancy. Time varying
exposures can arise either in short-term lagged exposures due to seasonality in air pollution or
long-term cumulative exposures due to changes in length of exposure. Our model addresses this
challenge by viewing gestational age as time-to-event data where each pregnancy becomes at risk
at a prespecified time (e.g. the 28th week). The pregnancy is then followed until either a birth
occurs before the 37th week (preterm), or it reaches the 37th week, and a full-term birth is
expected. The model also includes a flexible spatially varying baseline hazard function to control
for unmeasured spatial confounders and to borrow information across areal units. The approach
proposed is applied to geocoded birth records in Mecklenburg County, North Carolina, for the
period 2001–2005.We examine the risk of preterm birth that is associated with total cumulative
and 4-week lagged exposure to ambient fine particulate matter.
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1. Introduction
Preterm birth, which is defined as gestational age at delivery of less than 37 weeks, is linked
to significant neonatal morbidity and mortality (Lorenz et al., 1998; Goldenberg et al., 2008;
Saigal and Doyle, 2008), long-term health and developmental problems (Swamy et al.,
2008; Moster et al., 2008) and medical costs (Institute of Medicine, 2006). There is a
growing interest in examining the association between environmental exposures during
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pregnancy and adverse birth outcomes. Population studies have found consistent positive
associations between ambient air pollution levels and low birth weight; however,
epidemiological evidence remains mixed for preterm birth (S ̆rám et al., 2005; Bosetti et al.,
2010).

Studies of air pollution and preterm birth utilize large birth record databases that provide
extensive information on individual live births. For each birth, average exposures to air
pollutants over specific susceptible pregnancy windows are then derived from air quality
measurements. The most common analytic approach is carried out via logistic regression
where preterm versus full-term births are treated as binary outcomes (Wilhelm and Ritz,
2005; Huynh et al., 2006; Leem et al., 2006; Ritz et al., 2007; Brauer et al., 2008). This
approach is most suitable to examine exposure metrics that do not vary during pregnancy,
such as the first 6 weeks since conception, or the first and second trimester (Woodruff et al.,
2009). However, many long-term and short-term exposure windows are time varying
because ambient pollution levels exhibit strong seasonality.

Consider using the average air pollution level over the entire pregnancy to estimate the long-
term effect of air pollution on preterm birth. In a logistic regression model, bias in risk
estimates may arise with this overall exposure metric because the lengths of exposure differ
between preterm and full-term births. For pregnancies that are conceived in the winter
months, preterm births are more likely to experience lower average exposure than full-term
births. This is because full-term births have a longer exposure window extending into the
summer months when ambient pollution concentrations are typically higher. However, for
pregnancies that are conceived in the summer, preterm births experience higher exposure
levels compared with full-term births. The direction and magnitude of the bias therefore
depend on the seasonality in both air pollution and the number of on-going pregnancies in
the population (Darrow et al., 2009b). This challenge is also present in estimating the effect
of air pollution during the third trimester (27th week till birth).

Estimating the short-term effects of air pollution on preterm birth during late pregnancy is
also problematic by using logistic regression. A common approach is to capture late
pregnancy exposure with a window before delivery (e.g. 4 weeks or 6 weeks before birth).
However, this exposure metric does not coincide with the period when a full-term birth is at
risk of being preterm. For example, consider a 40-week full-term pregnancy that
experienced high exposure during the month before birth. This pregnancy will contribute to
a protective effect of air pollution even though it cannot be preterm after week 37. Using
only the weeks before birth also discards data from earlier weeks that are informative about
the short-term effect.

The main contribution of this paper is to describe a model for preterm birth that addresses
the above challenges in estimating the effects of long-term and short-term exposures that are
time varying during pregnancy. This is accomplished by viewing gestational age as time-to-
event (survival) data where each pregnancy enters the risk set at a prespecified time (e.g. the
28th week). The pregnancy is then followed until either a birth occurs before the 37th week
(preterm), or it reaches the 37th week and a full-term birth is expected. Therefore, we align
the data such that pregnancies are compared with each other only during a window at risk of
being preterm (i.e. 28th–37th week). This allows us to examine

a. long-term effects by using a time varying cumulative average instead of an average
over the entire pregnancy and

b. short-term effects by using a time varying lagged average instead of a fixed period
defined before delivery.
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The risk estimates from the time-to-event approach have similar interpretations to that
obtained from a time series analysis stratified by gestational week (Darrow et al., 2009a). In
a time series analysis, the outcome of interest is the daily number of preterm births
aggregated over a geographic region. The corresponding daily exposure metric is obtained
by averaging air pollution exposures across all on-going pregnancies on each day. The time
series design also overcomes the challenges in defining time varying exposures because the
aggregate exposure is allowed to vary between days. The time series design was originally
motivated by the issue of unmeasured confounders. In contrast, our proposed approach
utilizes the full spatial and temporal contrast in air pollution levels and can control for
individual level covariates. Moreover, a time series analysis has limited power to detect
long-term effects because considerable temporal variation in the exposure is removed when
controlling for seasonality in preterm births.

In studies that rely on birth certificate data, the issue of residual confounding due to
unmeasured risk factors is well recognized because the health outcome is compared across
space and time (Northam and Knapp, 2009; Strickland et al., 2009). Examples of known risk
factors for preterm birth that are typically not available from birth certificates include the
mother’s socio-economic status, maternal body mass index, level of stress and anxiety,
amount of physical work, the quality of the built environment and infections status. Often
these factors may also, at least partially, determine the amount of personal exposure to air
pollution due to outdoor sources. We control for unmeasured spatial confounders by
including a flexible baseline hazard model that is spatially varying. This approach also
allows us to borrow information across spatial units to estimate the baseline hazards at
locations with small numbers of births.

Spatially referenced survival models often account for association between nearby regions
by including a random effect (frailty) for the region of residence in the linear predictor, and
smoothing the frailties by using a Gaussian spatial model (Banerjee et al., 2003). Although
this approach allows different regions to have different baseline risks, it assumes that the
general shape of the survival curve is the same for each region after accounting for the
spatial frailty term. For example, this does not allow for some regions to have elevated risk
very early in pregnancy but low risk late in the pregnancy. For continuous survival data, one
generalization of the frailty model is to use an accelerated failure time model, i.e. suitably
transform the survival times and model the transformed responses by using linear regression
while allowing the mean and the entire shape of the residual distribution to vary spatially.
Many models for the spatially varying residual density exist; see for example Griffin and
Steel (2006), or Reich and Fuentes (2007). In contrast, with the model for continuous
survival data that was described above, the North Carolina birth certificate records
gestational age as the number of completed weeks. Therefore, we propose a simpler model
for discrete time survival data.

We apply the proposed model to estimate the total cumulative and 4-week lag effects of
ambient particulate matter that is less than 2.5 μm in diameter (PM2.5). We treat ambient
PM2.5-concentration as a surrogate measure for personal exposure to fine particulate matter
from outdoor sources. The PM2.5-mass represents a chemically diverse mixture of solids and
liquids that arise from combustion processes. Exposure to PM2.5-pollution has been
associated with numerous health outcomes including mortality, emergency department visits
and hospital admissions (Pope and Dockery, 2006). The biological mechanisms by which
particulate matter might affect preterm birth focus on initiation of the inflammation pathway
(Kannan et al., 2006).

The remainder of this paper is organized as follows. Section 2 gives the general modelling
framework of our discrete time spatial survival model for preterm birth. Section 3 describes
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the air pollution data and a data set of geocoded births from Mecklenburg County, North
Carolina, for the period 2001–2005. Because past studies predominantly use logistic
regression to analyse preterm birth, Section 4 describes a simulation study that compares the
model proposed and the standard approach that treats prematurity as a binary outcome. We
highlight the potential bias in risk estimates when surrogate time invariant exposures (e.g.
pregnancy average or 4 weeks before birth) are used instead of time varying exposures (e.g.
cumulative average or 4-week lag). Results from the health analysis are given in Section 5.
Finally, discussion and future work appear in Section 6.

2. Spatial time-to-event model for preterm birth
For pregnancy i, we observe the follow-up time ti, an indicator of whether the pregnancy
was censored ci, the spatial location si and a vector of p potentially time-dependent
covariates Xi(t) = (X1i(t), … , Xpi(t))’. We assume a discrete domain for spatial locations.
For example, in our application si represents census tracts in Mecklenburg County. We also
assume a discrete domain for event times because gestational age is typically recorded as the
number of completed weeks. We define gestational weeks 28–36 as the at-risk period for a
pregnancy being preterm. For preterm births with gestational age less than 37 weeks, ti
represents the completed week of gestation and ci = 0. Full-term births of at least 37 weeks
are censored at week 36 (ti = 36 and ci = 1) because they are no longer at risk of being
preterm. Therefore, under this modelling framework (which is illustrated in Fig. 1),

a. no censoring occurs between gestational weeks 28–35,

b. all preterm births experienced an event and

c. all full-term births are censored.

The model is defined through the event hazard rate, π{Xi(t), si, t}∈[0, 1], which is the
probability of birth for pregnancy i at week t given that pregnancy i reaches t. This implies
the survival probability

(1)

i.e. the usual life table model. We model the discrete event hazard rate by using spatial
probit regression:

(2)

where Φ is the standard normal distribution function and β is the vector of regression
coefficients. The probit link is chosen to facilitate Bayesian inference by using Markov
chain Monte Carlo sampling and other link functions may be considered, e.g. a logistic link
(Holmes and Held, 2006). Parameter β0(s, t) determines the baseline risks (the event rate for
a subject with X1i(t) = … = Xpi(t)=0). Because β0(s, t) varies with both space and time, this
model spans the entire class of baseline models on this discrete domain of si ∈ {1, … , S}
and t ∈ {28, … , 36}, where S is the total number of discrete spatial units in the study
region.

Let β0(s, t) = η + μ(s) + γ(t) + θ(s,t), where η is the overall average, μ(s) is a spatial effect,
γ(t) is a temporal effect and θ(s, t) is the space–time interaction. Since the spatial terms μ =
(μ(1), … , μ(S))’ are discrete areal units, we model them by using the conditionally auto-
regressive (CAR) model (Besag, 1974). This spatial model is specified through spatial
adjacencies. Let s~s’ indicate that regions s and s’ are spatial neighbours and ms be the
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number of spatial neighbours of region s. The CAR model is often defined through the full
conditional distribution of μ(s) given μ at all other locations. The full conditional
distribution is Gaussian with

(3)

(4)

The full conditional mean is proportional to the average of the spatial neighbours, where ρμ

∈ [0, 1] controls the degree of spatial association, and the variance is controlled by .
The joint model for the vector μ is multivariate normal with mean 0 and covariance

, where the (s, s’) element of CS is CS(s, s’) = I(s~s’) and MS is diagonal

with diagonal elements ∑s’≠s CS(s,s’)=ms. We denote this model as .

The temporal effects γ = (γ(28), … , γ(36))’ control the temporal average baseline hazard
function. The vector γ has a lag 1 auto-regressive model which can be written

, where CT is the 9 × 9 temporal adjacency matrix with (t, t’) element
equal to I(∣t – t’∣ = 1). The spatiotemporal random effects have the dynamic spatial model
(Banerjee et al., 2003)

(5)

where ρθ ∈ (0, 1) and . For identification
purposes, we fix θ(s, 28) = 0 for all s.

The above baseline hazard function model has several special cases. If θ(s, t) ≡ 0, then β0(s,
t) η + μ(s) + γ(t), and the baseline risk function varies spatially only through the spatial
frailties μ(s). Therefore the shape of the risk function for all regions is constant and
controlled by γ. If ρμ = ρδ = 0, then the baseline risk functions are exchangeable across
locations, and hierarchically centred on η + γ.

Inference is carried out in a Bayesian framework by specifying priors for the model

parameters. Parameter η and each component of β are assigned N(0, 1002). The variances ,

 and  gamma(a1, b1). Following Kelsall et al. (1999), we take a1 = 0:5 and b1 =
0:005. The CAR association parameters ρμ, ργ, ρθ, ρδ ~ beta(a2, b2). We discretize the prior
to 1000 equally spaced points spanning [0,1] and, to give an uninformative prior, we take a2
= b2 = 1.

For each pregnancy, we augment the data (ci, ti) to (Yi(28), … , Yi(ti)), where Yi(t) = 0 for t <
ti and Yi(ti) = 1 – ci. Therefore, at each time point during the pregnancy, Yi(t) indicates
whether a preterm birth occurred. The model for pregnancy i can then be written as
Yi(t)~Bernoulli[Φ{β0(s, t)+Xi(t)’β}], independent across time. The Bernoulli model for Yi(t)
is equivalent to the model Yi(t) = I{Zi(t) > 0}, where Zi(t) is a latent variable with Zi(t) ~ N
{β0(s,t) + Xi(t)’ β, 1}.

After introducing the latent variables Zi(t), the model is entirely conjugate, and we used
Gibbs sampling (Casella and George, 1992) to analyse the posterior distributions of all
unknown parameters. All analysis was carried out in R 2.8.0 (R Development Core Team,
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2009). We generated 20 000 samples and discarded the first 5000 samples as burn-in.
Convergence was monitored by using trace plots and auto-correlation plots for several
representative parameters. In the on-line supplementary material, we describe the Markov
chain Monte Carlo algorithm in detail and provide the R code for fitting the spatial survival
model.

3. Health and exposure data
Birth data for Mecklenburg County were obtained from the North Carolina detailed birth
record database. Mecklenburg County is the most populous county in North Carolina and
contains the city Charlotte. We included all pregnancies that were conceived from the period
2001–2005 using the clinical estimate of gestation in the birth record to back-calculate the
date of conception. We restricted the analysis to singleton live births with birth weight 400 g
or more and no congenital anomalies. We further restricted the data set to those mothers
aged 15–44 years who self-declared as non-Hispanic white, non-Hispanic black or Hispanic.

Daily PM2.5-data were obtained from the statistically fused air quality database (http://
www.epa.gov/esd/land-sci/lcb/lcb_sfads.html). The database is a recent product from the US
Environmental Protection Agency that provides predicted daily PM2.5-concentration
averaged over contiguous 12 km × 12 km grid cells. We chose this data set because monitors
in the air quality system network typically measure PM2.5 only every third or sixth day. The
database predictions are based on a Bayesian space–time hierarchical model (McMillan et
al., 2009) that combines

a. PM2.5-data from the air quality system network and

b. outputs from the models-3–community multiscale air quality model (Byun and
Schere, 2006), which is an air quality model that simulates the complex interactions
between weather and air pollutants on the basis of atmospheric chemistry and
physics. Although this model provides higher spatial and temporal resolution
compared with the air quality system network, its output is known to exhibit bias,
particularly for capturing short-term variation between days (Mebust et al., 2003).
The statistically fused air quality database attempts to adjust the bias in the
community multiscale air quality model by using the observed PM2.5-
concentrations from the air quality system network.

Maternal residential addresses at the time of delivery were geocoded to the street block level
by using ArcGIS 9.3 software (Esri, Redlands, California). We used 2006 topologically
integrated geographic encoding and referencing street data from the US Census Bureau as
the spatial reference file. The geocoding success rate was 97.1%, owing to invalid, missing
or unmatched addresses. Using the latitude and longitude co-ordinates that were delivered
by the geocoding process, we linked each pregnancy in space and time to one of the
statistically fused air quality grid cells overlapping Mecklenburg County.

4. Simulation study
This section describes a simulation study to compare the approach proposed versus viewing
prematurity as a binary outcome. Reproducing the PM2.5 exposure levels in Mecklenburg
County, we generated 1000 replicates of simulated exposures and gestational age for births

that were conceived in the year 2001 as follows. Let  denote the average PM2.5-level
during the week leading up to day c. For each pregnancy i conceived on day c, we generated
its weekly PM2.5 exposure series Xij for gestational week j = 28, … , 42 as
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The above exposure model assumes that pregnancies conceived on the same day share mean
exposure time series, and parameter σ2 controls the between-pregnancies variation on a
particular day. The total sample size was 10588 births with a median of 30 conceptions per
day.

We estimated  and σ2 = 0:30 on the basis of the actual exposure series in our study.
Weekly PM2.5-averages show strong temporal correlation with a lag 1 auto-correlation of
0.94. Using Xij we constructed total cumulative and 4-week lagged exposure Xi(t) for each
pregnancy.

The gestational age ti for pregnancy i was generated with probabilities

where  for t ≤ 36 and hi(t)= h0(t) for t > 36. In other words, we

generated Yi(t) for t = 28, … , 42 and took ti = min{t∣Yi(t) = 1}. We estimated  from the
data and allowed the hazard ratio β for PM2.5 to vary in the simulation. Here we do not
consider spatial variation in baseline risks.

In the time-to-event approach, we modelled Yi(t), which is an indicator of whether a birth
occurred in week t = 28, … , ti, by using a discrete time survival model Φ{Yi(t) = 1} = β0(t)
+ β1 Xi(t). We also modelled the occurrence of a preterm birth via probit regression as
Φ{P(ti < 37)} = β0 + β1 Xi. In the time-to-event approach, Xi(t) represents time varying
cumulative and 4-week lagged exposure. In the probit regression, Xi represents the surrogate
measures of using the average PM2.5-level for the entire pregnancy and the 4-week exposure
before delivery.

Table 1 gives the bias and 95% confidence interval coverage probability for various values
of approximate relative risk (1:927β) per interquartile range of PM2.5-exposures. The root-
meansquared error and average confidence interval length are given in the on-line
supplementary materials, section 3. We found that the survival model consistently
outperforms the probit regression based on the exposure levels and variations in our study
population. Also, when treating prematurity as a binary outcome, the surrogate time
invariant metrics led to a positive bias in the risk estimates. The bias can be attributed to the
seasonality in conceptions and PM2.5-levels. Specifically, the largest number of conceptions
occurred in May 2001. Among this birth cohort, full-term births experience lower PM2.5-
levels later in the pregnancy which coincides with the winter months. Therefore, in the
simulation full-term births are more likely to have lower average exposures across the entire
pregnancy and the 4 weeks before birth, even though they were not at risk of being preterm
past the 37th week.

5. Analysis of North Carolina preterm birth data
5.1. Health model for preterm birth and PM2.5

We examined the effects of average PM2.5-levels over two time varying exposure windows.
Given a pregnancy-completed gestational week t, we considered the fixed length short-term
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exposure of 4-week lag (4 weeks leading up to the date that week t was completed). We also
considered the long-term cumulative exposure of conception till week t where the exposure
window length varies with gestation age.

We controlled for the following time-independent variables: maternal age (15–19, 20–24,
25–29, 30–34, 35–39 and 40–44 years), maternal education (less than 9, 9–11, 12, 13–15
and more than 15 years), race or ethnicity (non-Hispanic white, non-Hispanic black and
Hispanic), tobacco use during pregnancy (yes or no), marital status (married or unmarried),
first born (yes or no), infant sex (male or female) and percentage population below poverty
of each census tract obtained from the 2000 US census. This choice of covariates as
potential confounders was based on a previous study of air pollution and birth weight in the
same study population (Gray et al., 2009). To control for unmeasured time varying
confounders, we included the season of conception (winter, December–February; spring,
March–May; summer, June–August; autumn, September–November) and indicators for
conception year. We also calculated a 1-week lagged average temperature for gestational
weeks 28–36. We modelled the short-term effect of temperature as a smooth function via
natural cubic splines with 4 degrees of freedom.

We considered three models for the baseline risk: non-spatial with β0(s, t) = γ(t), spatial
frailty with β0(s, t) = μ(s) + γ(t) and space–time interaction β0(s, t) = μ(s) + γ(t) + θ(s, t).
Here β0(s, t) represents the baseline prevalence of preterm birth at tract s among pregnancies
that reached gestational week t. We assume that the effects of all other covariates are
constant in space and time.

Finally, we discuss the interpretation of the regression coefficients β where the probit link
makes interpretation difficult. However, for small probabilities, the Gaussian distribution
function can be approximated with an exponential function leading to an approximate
relative risk interpretation. Specifically, for z ∈ (−3, −1), and thus Φ(z) ∈ (0:001, 0:159),
Φ(z)≈exp.0:136+1:927z). This approximation is quite accurate; over this range of z,
exp(0:136+1:927z) explains over 99.7% of the variation in Φ(z). Therefore, we present the
posteriors ofβ* = 1:927β and refer to exp(β*) as the approximate relative risk of preterm
birth due to a unit increase in the covariates.

5.2. Results
Our study included a total of 55647 geocoded births (7.7% preterm) representing all 144
census tracts in Mecklenburg County, North Carolina. In the study population, the average
PM2.5-level across the entire pregnancy had a mean of 15.5 μg m−3 and an interquartile
range of 1.37 μg m−3. The average PM2.5-level across a 4-week window had a mean of 15.5
μg m−3 and an interquartile range of 4.56 μg m−3.

Table 2 gives the posterior means and 95% posterior intervals of the coefficients, in terms of
approximate relative risk (1:927βj). Estimates are from a model that includes a space–time
interaction baseline hazard and average PM2.5-levels over the entire pregnancy. Higher risks
of preterm birth were observed for older, unmarried, non-Hispanic black mothers and among
those who reported tobacco use. Mothers with more than 15 years of education were at a
reduced risk of preterm birth compared with mothers with 12 years of education. First-born
babies and those that were conceived during the summer months were also more likely to be
preterm. We did not find an acute effect of temperature during late pregnancy. Also, census
tracts with higher proportions of families below the federal poverty line were associated
with higher rates of preterm birth. These results are consistent with findings from previous
studies (Wilhelm and Ritz, 2005).
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Table 3 gives the estimates and 95% probability intervals of the PM2.5-coefficients under
various baseline risk models. The estimates are presented as approximate relative risk per
interquartile range. We found a consistent positive association between average total
cumulative PM2.5-exposure and the risk of preterm birth. Specifically, controlling for a
tract-specific baseline hazard model (space–time interaction), an interquartile range (1.73 μg
m−3) increase was associated with a 7.3% (95% posterior interval 2.5, 11.7) increase in the
risk of preterm birth. The magnitude of our risk estimate is consistent with previous studies
using average exposure across the entire pregnancy (Brauer et al., 2008). The deviance
information criterion, effective degrees of freedom, posterior predictive loss and estimates
for the CAR parameters are given in the on-line supplementary materials, section 2.

We did not find a statistically significant association between a 4-week lagged exposure and
preterm birth. The PM2.5-level in Mecklenburg County is below the national ambient air
quality standards and short-term exposure may not be sufficiently high to induce a shift in
gestation. Several studies have reported evidence linking short-term exposure to PM2.5 and
preterm births in urban communities with higher levels of PM2.5 such as Atlanta, Georgia
(Darrow et al., 2009a), California (Huynh et al., 2006) and Pennsylvania (Sagiv et al.,
2005).

To visualize the spatial variation in baseline risk across counties, Fig. 2 plots the tract-
specific baseline rates of preterm birth and very preterm birth (less than 34 gestational
weeks). The hazard rates are centred at the average value of each covariate across the study
population. Tract-specific baseline hazards for the individual gestational week are given in
Fig. 1 in the on-line supplementary material. The rates are categorized into four groups
indicated by different shadings by a k-means algorithm that minimizes within-group
variation. This analysis is not intended to suggest that it is the geography itself that is driving
these differences in preterm birth rates. Rather there is a spatially patterned latent variable
which we cannot account for when relying solely on birth certificate data. We found
relatively small spatial variation at the census tract level in our study region. We also found
that the differences in deviance information criterion values are extremely small and found
no statistically significant differences in baseline risks across tracts. We note that our
objective is not to identify a model that best predicts the occurrence of preterm birth, but to
assess the robustness of risk estimates under different ways to control for unmeasured spatial
confounders. The ability to model baseline hazard functions flexibly may be crucial in other
settings such as a county level analysis across the entire state of North Carolina.

6. Discussion
We present a model for preterm birth by viewing gestational age as discrete time survival
data. The Bayesian modelling framework also incorporates a flexible spatial baseline hazard
function. The approach proposed can examine both long-term and short-term environmental
exposures, such as ambient air pollution, that are potentially time varying during pregnancy.
Bosetti et al. (2010) noted that previous studies often did not report results for all exposure
metrics, resulting in the possibility of selective reporting and difficulty in synthesizing
findings. Although we report only the total cumulative and 4-week lagged exposure metrics
to demonstrate our approach, additional time varying metrics such as the third trimester, 6-
week lag and 1-week lag can be examined.

Several extensions of our spatial survival model are possible. For example, it would be

straightforward to incorporate non-stationarity by allowing ,  or  to vary with space or
time. The variances could be modelled as independent draws from a common prior, or as a
log-Gaussian process to encourage the variability to change smoothly over space or time.
Also, we have centred all random effects at the constant η. A constant baseline mortality rate
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is similar to an exponential distribution. Centring on other parametric distributions is also
possible; for example, replacing η with

would approximate a Weibull distribution. Also, about two-thirds of preterm births had low
birth weight (less than 2500 g) and another model extension is to consider joint modelling of
gestational age and the risk of low birth weight.

Each regression coefficient can also be modelled by using the spatiotemporal CAR model
following the model for β0(s, t), i.e.

where , , θj(s,t) = ρθj θj(s, t – 1) + δj(s, t)

and . In full generality, this allows the effect of the jth covariate
(e.g. exposure to PM2.5-pollution) to vary either by spatial location or gestational age.
Posterior inference is also straightforward via Gibbs sampling. One potential future analysis
is to examine whether air pollution effects vary across spatial unit and whether the spatial
variation in risks is associated with spatial variation in population characteristic.

There are additional challenges that are common in the analysis of preterm birth and air
pollution that our model does not consider and warrant further investigation. The first
challenge arises from assigning PM2.5-exposure to each individual pregnancy and the
associated potential measurement error. We used the statistically fused air quality data set to
avoid missing daily observations in calculating average exposure. However, we ignored the
spatial change of support problem by assigning the average exposure over a 12 km × 12 km
grid cell to the point level (geo-coded residence of the mother). A significant subset of
mothers also moves during pregnancy (Canfield et al., 2006). The second challenge
concerns outcome misclassification, particularly around pregnancies with gestational age
near the 37th-week cut-off. The gestational length for each pregnancy was clinically
estimated by physicians and the measurement error could differ on the basis of when
prenatal care was initiated, as well as whether ultrasound fetal diagnostics were part of the
routine prenatal care. For example, using Illinois data from 1989–1991, Mustafa and David
(2001) found that the concordance between gestational age obtained by using reported last
menstrual period and clinical estimates are 78% for the 1-week difference and 87% for 2-
week differences. Ananth (2007) also found that the rates of preterm birth based on clinical
estimates were lower relative to that based on last menstrual periods. Finally, there is also a
growing interest in differentiating spontaneous and medically indicated preterm births
(Savitz et al., 2005) where the effects of air pollution may be heterogeneous across clinical
subtypes and severity of preterm births.
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Fig. 1.
A time-to-event approach for preterm birth and air pollution: a preterm birth and a full-term
birth are shown with pregnancywide cumulative exposure and 4-week lagged exposure
given at week 30 (●, conception date; x, birth date; 엯, censored)
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Fig. 2.
Baseline tract-specific rates of (a) preterm births (less than 37 gestational weeks) (◻, [6.8,
7.25)%; , [7.25, 7.45)%; , [7.45, 7.55)%; , [7.55, 8]%) and very preterm birth (less than
34 gestational weeks) (◻, [1.45, 1.55)%; , [1.55, 1.65)%; , [1.65, 1.75)%; , [1.75,
1.85]%): baseline hazard rates are calculated at the average value of each covariate across all
areas; estimates are from a model that includes space–time interaction baseline hazards and
average PM2.5-levels over the entire pregnancy
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Table 1

Simulation study results: bias and coverage probability of a 95% confidence interval based on 1000 simulated
replicate data sets

Relative risk Bias (×100) Coverage probability

Cumulative 4-week lag Cumulative 4-week lag

Survival Probit Survival Probit Survival Probit Survival Probit

1.00 −0.01 0.23 0.00 0.34 0.96 0.94 0.96 0.90

1.01 0.02 0.42 −0.01 0.37 0.95 0.91 0.95 0.87

1.02 −0.01 0.51 0.00 0.42 0.95 0.90 0.95 0.85

1.03 −0.03 0.60 0.02 0.47 0.94 0.89 0.95 0.84

1.04 0.01 0.78 0.01 0.50 0.95 0.85 0.96 0.81

1.05 −0.01 0.91 0.02 0.53 0.95 0.80 0.95 0.79
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Table 2

Posterior mean and 95% posterior interval for the relative increase in preterm birth risk associated with
various factors†

Covariate Estimate (95% posterior interval)

Male 1.00 (0.96, 1.05)

Tobacco 1.34 (1.23, 1.46)

Unmarried 1.19 (1.12, 1.27)

Firstborn 1.21 (1.15, 1.27)

Tract level % poverty (×10) 1.05 (1.01, 1.08)

Ethnicity

Non-Hispanic white Reference

Non-Hispanic black 1.40 (1.31, 1.49)

Hispanic 0.99 (0.91, 1.08)

Mother’s education (years)

< 9 0.99 (0.88, 1.09)

9–11 1.09 (1.00, 1.17)

12 Reference

13–15 1.00 (0.93, 1.07)

> 15 0.83 (0.78, 0.90)

Mother’s age (years)

Age 15–19 0.95 (0.86, 1.03)

Age 20–24 0.94 (0.88, 1.00)

Age 25–29 Reference

Age 30–34 1.14 (1.08, 1.21)

Age 35–39 1.31 (1.21, 1.42)

Age 40–44 1.47 (1.27, 1.67)

Conception season

June–August Reference

September–November 0.92 (0.84, 1.01)

December–February 0.92 (0.83, 1.01)

March–May 0.98 (0.92, 1.05)

†
Estimates are from a model that includes space–time interaction baseline hazards and average PM2.5-levels over the entire pregnancy.
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Table 3

Posterior mean and 95% posterior interval of the PM2.5-coefficients under various baseline risk models†

Baseline hazard
Cumulative

estimate (95%
posterior interval)

4-week lag
estimate (95%

posterior interval)

Non-spatial 1.067 (1.020, 1.116) 1.023 (0.961, 1.087)

Spatial frailty 1.069 (1.020, 1.248) 1.017 (0.956, 1.074)

Space–time interaction 1.073 (1.025, 1.117) 1.031 (0.977, 1.088)

†
The estimates are presented as approximate relative risks (1.927βj) per interquartile range (1.37 μg m−3 for total cumulative and 4.56 μg m−3 for

4-week lag).
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